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Background and Summary of Prior Results (1)

We have been working on the system concept of a low-cost low-
maintenance Mars Regional Navigation Satellite System
(MRNSS) [1] with the following key principles

» Capitalize on the build-up of orbiting and surface infrastructures on Mars
during the human Mars exploration era [2][3][4]

* Leverage on a new geometric trilateration method that simultaneously
performs absolute positioning and relative positioning [5][6]

* Introduce the concept of using relative positioning that provides regional
navigation services in the vicinity of a human Mars landing site (~100
km), thereby relieving the stringent requirements on orbit determination

(OD) of Mars navigation satellites ;
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» Proposed Mars Regional Navigation Satellite System

Same Beam Interferometry (SBI) [7] Y node Existing Mars assets r
b

e . >
N> .~ Occasional DSN tracks » “error-canceling” node
. i on existing Mars assets

I Raw range
Existing Mars assets /7 measurements

Simultaneous Doppler/ranging of orbiters
within the ground antenna beamwidth [6]

“Differencing” of raw range Mars landing site
measurements to obtain

precision relative
positioning [4][5]
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» Orbits of the Notional Mars Navigation Nodes (3-D View)

Utopia Planitia: 182.5° due East, 46.7° due North

Aerostationary orbiter 1 (Areo45): 162.5° due East o
Aerostationary orbiter 2 (Areo90): 207.5° due East N e ‘
Aerosynchronous orbiter (Areo68): 180° due East and 20%inclinedw.. S /

Deep Space Habitat (Mars48hr):  180° due East, 149.5° inclined " .y, o .
.
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Challenges of Deep Space Tracking for Multiple Spacecraft

Traditional deep space tracking techniques include Doppler, ranging, and
Delta Differential One-Way Ranging (ADOR)

2-Way Doppler/ranging requires tight coordination between ground and flight
(Doppler compensation), and 1 ground station tracking 1 spacecraft (1-to-1)

ADOR is 1-way, but requires 2 ground station tracking 1 spacecraft (2-to-1)

Tracking requires tying up an antenna for a long time [8]. When number of
missions increase, and for missions with multiple spacecraft, there might not
be enough DSN antenna assets to meet missions’ communications and
tracking needs

There is a desire to extend the current deep space tracking techniques to
support multiple spacecraft in a beam to improve the antenna usage
efficiency
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- A collaborative flight-ground architecture

= Assume Doppler/ranging in X-band, for low rate commands/telemetry
= All Mars orbiters lie within the beamwidth of a DSN 34-m BWG antenna

= For N orbiters, the downlink operate in N allocated frequency bands
separated by N-1 guide bands to prevent interference

= Changes in flight and ground systems
— The N orbiters time-share a single uplink; commands differentiated by SCID

— The ground “Doppler-compensates” the uplink signal in either ways: a) w.r.t. the
Mars center, b) w.r.t. the average (centroid of Doppler of N orbiters)

— Note: guard bands must be wide enough to accommodate the residual Doppler.

Preliminary simulation: residual Doppler and Doppler rate are bounded by 45 KHz &
2.6 Hz/s

9



> Flight radio upgrade

= A different turn-around-ratio for each spacecraft so the same uplink would
be coherently “turned-around” to modulate the telemetry and ranging
signals on a different allocated downlink frequency

= A well-designed tracking loop that can sweep, acquire, and track the
unknown uplink carrier phase and high residual Doppler frequency

- Ground upgrades
= One ground antenna receives all N downlink signals with different carrier
frequencies via Multiple Spacecraft Per Aperture (MSPA)

= Each signal stream is extracted via band-pass filtering and down-

converted to IF for telemetry, Doppler, and range processing
10



» Doppler and Doppler Rate Profiles

x10° Doppler relative to Earth (Hz) Doppler rate relative to Earth (Hz/s)
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- Spacecraft Radio Schematic

Complex signal representation
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» Smart Sweeping Algorithm put
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Slide provided by Jim Border et. al. “Precise Tracking of the Magellan

@4==‘=4= and Pioneer Venus Orbiters by Same-Beam Interferometry”, AAS/AIAA
A - Spaceflight Mechanics Meeting, Feb 1991, Houston, Texas
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DOPPLER

* ONE GROUND STATION UPLINKS TO ONE
SPACECRAFT, WHICH TRANSPONDS SIGNAL
BACK TO UPLINK STATION

- ORBIT PARAMETERS INFERRED FROM SIGNATURE
IN LINE-OF-SIGHT DATA

SAME-BEAM INTERFEROMETRY

+ TWO GROUND STATIONS RECEIVE SIGNALS FROM
TWO OR MORE SPACECRAFT

+ PLANE-OF-SKY MEASUREMENTS COMPLEMENT
DOPPLER 14



Slide provided by Jim Border et. al. “Precise Tracking of the Magellan
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SAME-BEAM INTERFEROMETRY ERROR SOURCES
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Slide provided by Jim Border et. al. “Precise Tracking of the Magellan
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- Since the introduction of SBI, SBI was used or proposed for use in
deep space scenarios, e.g. approach/landing, ascent/docking

- Examples

Q. Liu, F. Kikuchi, K. Matsumoto, et. al., “Error Analysis of Same-Beam Differential VLBI
Technique using two SELENE satellites,” Advances in Space Research 40 (2007).

M. Chen, Q. Liu, “Study on Differential Phase Delay Closure of Same-Beam VLBI,” 2"d
International Conference on Computer Engineering and Technology, April 2010,
Chengdu, China

S. Chen, Q. Liu, “A Study on Accurate Same Beam Interferometry Differential Phase
Delay Closure,” 12t International Conference on Computer and Information
Technology, October 2012, Chengdu, China

T. Martin-Mur, D. Highsmith, “Mars Approach Navigation Using the VLBA,” Proceedings
of the 215t International Symposium on Space Flight Dynamics, Toulouse, France,
September 28 — October 2, 2009 17
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- Preliminary SBI Navigation Covariance Analysis of Mars Scenario
= |nclude spacecraft structure modeling, and media and gravity effects

= Angular momentum desaturations every day, 1 mm/s uncertainty per
axis, 0.1 mm/s also tested

= Use 3 days of prior data, assume 12-hour latency
= SBI+2-way Doppler improves OD accuracy (Doppler) by a factor of 2 - 10
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- We report on the progress on the Mars In-Situ Navigation Study
= Position accuracy simulations confirm the feasibility
= |ntroduce simultaneous tracking techniques to improve OD accuracy

- Establish analysis/simulation processes and tools for more Mars
scenarios, and can be easily extended to lunar scenarios

» Ongoing and future work

= Design of navigation signaling scheme that enable fast integer-ambiguity-
resolution for carrier phase tracking in the Mars poor PDOP environment

= Examine the effect of dual & triple frequency receivers to improve the
acquisition and tracking performance at Mars

= Conduct hardware-in-the-loop demonstration
19
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